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Revision History � ������

This document� O�ce Note �����R	� is the 
rst revision of O�ce Note ������ The
major revisions to O�ce Note ����� are listed below�

� The abstract and introduction were both modi
ed to re�ect revisions to O�ce Note
������

� Section � was divided into four subsections� Much of the material di
ers only slightly
from the original� The material in Section ��� signi
cantly extends the development in
O�ce Note ������

� To maintain consistency with the notation used in the refereed publication related
to this document� the subsection numbering was modi
ed from that of O�ce Note ������
Theorem ��	�� �now Theorem ��a��� was strengthened� Consequently� the proof given is
more involved than the original one� The proofs of Theorems ��	�� and ��	��� originally
in Section � of O�ce Note ������ now appear in the Appendix� The detailed reduction of
the integrals in the proof of Theorem ����	� now appear in the Appendix� Several minor
changes were made to several proofs to improve the clarity of presentation�

� The 
rst three examples of Section � di
er only slightly from those given in O�ce
Note ������ The fourth example �Section ���� is new�

� An Appendix was added� Appendix A�	� A��� and A�� contain the proofs described
above� Appendix A�� is new�

� Four additional 
gures �Figures ��	�� were added� Sharper images of Figures 	��
replace those given in O�ce Note ������



Abstract

This article focuses on the construction� directly in physical space� of simply pa�
rameterized covariance functions for data assimilation applications� A self�contained�
rigorous mathematical summary of relevant topics from correlation theory is provided
as a foundation for this construction� Covariance and correlation functions are de	ned�
and common notions of homogeneity and isotropy are clari	ed� Classical results are
stated� and proven where instructive� Included are smoothness properties relevant to
multivariate statistical analysis algorithms where wind
wind and wind
mass correlation
models are obtained by di�erentiating the correlation model of a mass variable� The
Convolution Theorem is introduced as the primary tool used to construct classes of co�
variance and cross�covariance functions on R�� Among these are classes of compactly
supported functions that restrict to covariance and cross�covariance functions on the
unit sphere S�� and that vanish identically on subsets of positive measure on S�� It
is shown that these covariance and cross�covariance functions on S�� referred to as be�
ing space�limited� cannot be obtained using truncated spectral expansions� Compactly
supported and space�limited covariance functions determine sparse covariance matrices
when evaluated on a grid� thereby easing computational burdens in atmospheric data
analysis algorithms�

Convolution integrals leading to practical examples of compactly supported covari�
ance and cross�covariance functions on R� are reduced and evaluated� More speci	�
cally� suppose that gi and gj are radially symmetric functions de	ned on R� such that

gi�x
 � � for kxk � di and gj�x
 � � for kxk � dj� � � di� dj � ��

where k � k denotes Euclidean distance in R�� The parameters di and dj are �cuto��
distances� Closed�form expressions are determined for classes of convolution cross�
covariance functions

Cij�x�y
 �� �gi � gj
�x � y
� i �� j�

and convolution covariance functions

Cii�x�y
 �� �gi � gi
�x � y
�

vanishing for kx� yk � di � dj and kx� yk � �di� respectively� Additional covariance
functions on R� are constructed using convolutions over R� rather than R�� Families of
compactly supported approximants to standard second� and third�order autoregressive
functions are constructed as illustrative examples� Compactly supported covariance
functions of the form

C�x�y
 �� C��kx� yk
� x�y � R��

where the functions C��r
 for r � R are �th�order piecewise rational functions� are
also constructed� These functions are used to develop space�limited product covariance
functions

B�x�y
C�x�y
� x�y � S��

approximating given covariance functions B�x�y
 supported on all of S� � S��
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� Introduction

Operational atmospheric data assimilation systems have for many years required the speci
�
cation of forecast and observation error covariances in two and three space dimensions using
functions depending on a number of tunable parameters �Daley� 	��	�� There are many ex�
amples of simply parameterized covariance functions for statistical analysis of data in one
dimension� Applications can be found� for instance� in signal analysis �Papoulis� 	���� and
in time�series analysis �Priestley� 	��	�� Geophysical error 
elds� unlike one�dimensional
error 
elds� are usually regarded as being distributed on all or part of a three�dimensional
spherical annulus� and therefore can be conveniently modeled by random 
elds on subsets
of R� �Christakos� 	���� Vanmarcke� 	����� In the current generation of spectral statistical
analysis schemes for atmospheric data assimilation� for example� isotropic forecast error
covariance or correlation functions are de
ned on spherical surfaces by means of truncated
Legendre expansions �Parrish and Derber� 	���� Courtier et al�� 	����� In contrast to the
one�dimensional setting� the development of correlation theory in higher dimensions has
hardly been in�uenced by practical applications� Advanced data assimilation systems re�
quire �exible covariance models �Cohn et al�� 	����� and correlation theory tailored to data
assimilation applications should aid the development of covariance models likely to improve
analyses and forecasts in these systems�

This article represents an e
ort to develop basic theoretical and practical tools needed
to construct �exible covariance functions for applications in data assimilation� We hope
to achieve two major goals� The 
rst is to expose� in a digestible format� mathematical
theory relevant to the construction of simply parameterized covariance functions for data
assimilation applications� The second is to provide the reader with algorithms for this
construction� together with several illustrative examples� Since our covariance functions are
constructed directly in physical space� their properties di
er from those obtained through
truncated Legendre expansions� One notable advantage is our ability to construct spatially
limited covariance functions on the globe� This cannot be done using truncated Legendre
expansions� as we show in Section ��b� Approximations to such covariance functions have
been developed at the European Centre for Medium�Range Weather Forecasts �Courtier et
al�� 	���� Rabier et al�� 	�����

These spatially limited covariance functions are obtained by 
rst constructing compactly
supported covariance functions

C�x�y�� x�y � R��

depending on a tunable cuto
 distance d such that C�x�y� � � whenever the Euclidean
distance between x and y exceeds d� By then restricting x and y to the unit sphere S� and
taking d less than the diameter of S�� we obtain what we will call space�limited covariance
functions on S�� Space�limited covariance functions on S� and compactly supported covari�
ance functions on R� determine sparse covariance matrices through grid evaluation� thereby
reducing both storage and computational requirements� which are important considerations
for the Physical�space Statistical Analysis System under development at the Data Assimila�
tion O�ce �Cohn et al�� 	����� Compactly supported n�dimensional �spherical� covariance
functions have already been used in geological applications �Armstrong and Diamond� 	����
Oliver� 	����� In interpolation theory� Wu �	���� obtained a class of compactly supported
covariance functions on Rn in the form of �cuto
 polynomials�� using techniques di
erent
from those given in the present article� Compactly supported and�or space�limited assump�
tions are justi
able whenever covariances between points further apart than some cuto

distance are either known to be negligible �Hollingsworth and L�onnberg� 	���� L�onnberg
and Hollingsworth� 	����� or are not known well enough to justify computational expense�

	



Because the terminology in correlation theory is not standard� we will provide formal de
ni�
tions as needed throughout this article� A brief� informal exposition will su�ce for now� A
correlation function on a domainD �such asR� for instance� is a covariance function C�x�y�

normalized through division by the standard deviations C�x�x���� and C�y�y����� where
x and y are points in D� Covariance functions on D are those functions which determine
positive�semide�nite matrices when evaluated on any grid over D� Thus in particular� the
property of being a covariance function is hereditary� if C is a covariance function on D
then it is also a covariance function on every subset of D� This article exploits the fact
that covariance functions on S� can be obtained by restricting covariance functions on R�

to S�� The class of autocorrelation functions often used in electrical engineering is obtained
through self�convolution of 
nite�energy signals de
ned on R �Papoulis� 	����� and is con�
tained in the class of covariance functions on R� Cross�covariance and cross�correlation
functions are de
ned for multivariate or multidimensional random 
elds� In geophysical
applications� they are used to model covariances between di
erent geophysical 
elds� or
between di
erent layers of the atmosphere� ocean� or solid earth� with the autocorrelation
functions used to model covariances between points on each separate level� General de
�
nitions of cross�covariance functions are given in Christakos �	���� and Yaglom �	���� Ch�
��� Our de
nition uses cross�convolution� and is given in Section ��c� This is the de
nition
commonly used throughout the electrical engineering literature�

While correlation functions on a given domain D restrict to all subsets of D� these func�
tions are not necessarily correlation functions on supersets of D� In Weber and Talkner
�	����� for example� it was shown that standard time�series correlation functions which
have commonly been used to model spatial correlations on so�called meteorologically signif�
icant spaces� such as S� and R�� are not always valid correlation functions on these spaces�
Special techniques are necessary to develop correlation functions on such spaces�

Two main themes from multidimensional�multivariate correlation theory are prominent
in this article� The 
rst is construction of homogeneous� isotropic correlation functions
on R� using representing functions on R having monotonically decreasing one�dimensional
Fourier transforms� Examples of parameterized correlation functions of this type abound
in the time�series literature �e�g�� Papoulis� 	���� Example 	���� Thi�ebaux and Pedder�
	���� p� 	���� Correlation length scales are typical parameters� The primary advantage of
this approach is the simplicity of the condition for determining valid correlation functions
on R�� However� it does not give a general procedure for construction of compactly sup�
ported correlation functions� The latter theme is constructive development of multivariate
and multidimensional correlation functions through convolutions� Convolution is particu�
larly e
ective for construction of both compactly supported and space�limited correlation
functions� Thus the second theme complements the 
rst�

Most correlation functions developed in this article are homogeneous and�or isotropic� Sam�
ple correlations of geophysical 
elds rarely have such special symmetries� however� there are
many ways to construct nonhomogeneous and�or anisotropic correlation functions through
transformations of homogeneous and�or isotropic correlation ones� One such transformation
is illustrated by Example ��� below� Coordinate stretching is perhaps the most common
technique used to construct anisotropic from isotropic correlation functions� This technique
has been applied by Borgman and Chao �	���� to estimate the covariance function from
data located irregularly in space� and by Derber and Rosati �	���� and Carton and Hack�
ert �	���� for ocean data assimilation� A change of coordinates yielding �ow�dependent
anisotropic correlation functions has been described by Riish�jgaard �	�����

Background material for this article is summarized in Section �� Covariance and correla�
tion functions are de
ned� and common notions of homogeneity and isotropy are discussed�
Classical results from correlation theory and from Fourier analysis are also introduced� in�

�



cluding the Convolution Theorem� Section � contains theoretical results pertinent to corre�
lation modeling on R� and S�� Section ��a develops properties of the convolution functions
g � g obtained by self�convolving radially symmetric functions g over R�� Included are
smoothness properties of g � g relevant to multivariate statistical analysis algorithms where
wind�wind and wind�mass correlation models are obtained by di
erentiating the correlation
function of a mass variable �Daley� 	��	� Ch� ��� The construction of correlation functions
over R� using convolutions over R is also described� It is shown in Section ��b that 
nite
spectral expansions never determine space�limited isotropic correlation functions� Section
��c gives a practical algorithm for evaluating the convolution integrals gi � gj � where gi and
gj are both radially symmetric functions de
ned on R

�� Section � provides examples of con�
volution correlation functions� Families of compactly supported second�order autoregressive
�SOAR��like and compactly supported third�order autoregressive �TOAR��like correlation
functions are constructed� Compactly supported correlation functions of the form

C�x�y� �� C��kx� yk�� x�y � R��

where the functions C��r� for r � R are �th�order piecewise rational functions� are also
constructed� These functions are used to develop space�limited product correlation functions

B�x�y�C�x�y�� x�y � S��

approximating given correlation functions B�x�y� supported on all of S��S�� Concluding
remarks are given in Section �� An Appendix contains detailed proofs of several results
described in the text�

Although the development in this article is general� the results are slanted toward single�level
univariate applications� The methodology extends readily to the nonseparable� multivari�
ate setting� and results on this topic will be the subject of future articles� Covariance
functions developed in this article have been successfully tuned to observed data using the
maximum�likelihood estimation procedure developed by Dee �	���� and the generalized
cross�validation technique of Wahba �	���� Ch� ��� These results are reported in Dee and
da Silva �	���� and Dee et al� �	�����

� Background Material

The purpose of this section is to summarize notation� de
nitions� and a variety of known
results pertinent to correlation function modeling on R� and subsets of R�� The general
context of this summary is the correlation theory of real�valued �that is� scalar� random 
elds
de
ned on a setW � The theory pertains primarily to the case whereW is either Euclidean
space Rn or the unit sphere Sn��� however� emphasis is given to specialized results for R��
It follows from De
nition ��� below that correlation functions restrict to subsets� so that in
particular� correlation functions on S� are readily obtained through restricting correlation
functions on R� to S�� This is the approach taken in this article� and it provides a simple
and direct way of constructing a large class of correlation functions on S�� In particular�
this is a natural way to construct space�limited correlation functions�

The notation that follows abbreviates integrals over all Rn to integrals without limits where
convenient� Z

f�x� dx means

�Z
��

� � �
�Z

��

f�x�� � � � � xn� dx� � � �dxn�

�



The space of integrable functions on Rn is denoted as L��Rn�� while the space of square�
integrable functions on Rn is denoted by L��Rn�� The inner product of two �generally
complex�valued� functions f� and f� in L��Rn� is de
ned in the usual way�

�f�� f�� ��

Z
f��x� f��x�dx�

The notation w � r will denote the dot product of two vectors w and r in Rn�

��� Covariance and Correlation Functions� De�nitions

De�nition �
�� A function B�x�y� is the covariance function of a random �eld X de�ned
on W if

B�x�y� �
D
�X�x�� � X�x� �� �X�y�� � X�y� ��

E
�

where � � � denotes mathematical expectation� �

It follows immediately that covariance functions are symmetric� that is�

B�x�y� � B�y�x�� ���	�

De
nition ��	 provides a useful conceptual reference point� but actually using it to construct
covariance functions B�x�y� would require knowledge of all multidimensional probability
distribution functions of the underlying random 
eld X � The following two alternative
de
nitions provide a starting point for correlation function modeling in which no assump�
tions about the underlying probability distribution functions� other than existence of the
expectation given in De
nition ��	� are required� De
nition ��� is shown to be equivalent
to De
nition ��	 in Lo�eve �	���� pp� �������� or Wahba �	���� pp� 	���� for example�

De�nition �
�� A function B�x�y� is a covariance function on W if for each positive
integer m� and for each choice of points x��x�� � � � �xm in W � the matrix fB�xi�xj�g is
positive semide�nite� �

The fact that covariance functions restrict to subsets of W �W follows from De
nition ����
if T � T is any subset of W �W and the points x��x�� � � �xm lie in T � then the fact that
these points are also in W implies that the matrix fB�xi�xj�g is positive semide
nite�
That is� if B�x�y� is a covariance function on W � then it is also a covariance function on
T � Example ��� below is one illustration of this principle�

If B��x�y� and B��x�y� are both covariance functions on W � then by the Schur product
theorem �cf� Horn and Johnson� 	���� p� ���� and De
nition ���� the product function

B��x�y�B��x�y�� x�y � W�

is also a covariance function on W � This property is used in Example ��d�

De
nition ��� is a general test for covariance functions on any set W � This de
nition is also
useful as an experimental test for candidate covariance functions on a given� 
xed grid�

De
nition ���� as well as most of the results in the sequel� applies to correlation rather than
covariance functions� A correlation function C is obtained from a covariance function B

�



through normalizing by the standard deviations B�x�x���� and B�y�y�����

C�x�y� ��
B�x�y�

�B�x�x� �B�y�y�����
� �����

De
nition ��� implies that the variance function B�x�x� is everywhere nonnegative� and
in all that follows it will be assumed that B�x�x� is in fact strictly positive� so that the
correlation function ����� corresponding to a given covariance function is well�de
ned� From
De
nition ��� it follows that this correlation function is itself also a covariance function� In
addition� De
nition ��� applies only to correlation functions that lie in L��Rn�Rn�� Since
many classical results from correlation theory pertain only to such functions� De
nition ���
will serve as the most convenient reference point for the general theoretical development in
this article� The grid�independent nature of covariance functions is also clearly illustrated
through this de
nition�

Applying the Cauchy�Schwartz inequality to the covariance function B in De
nition ��	
shows that C in Eq� ����� is bounded by one in absolute value� Note also that C assumes
its maximum on the diagonal of W �W � that is

C�x�x� � 	�

Because correlation functions are dimensionless� technical de
nitions and results that follow
can be stated more simply than the corresponding statements for covariance functions�
Nothing essential is lost in the transition between covariance and correlation functions�
Only the standard deviations are necessary to recover the covariance function B from the
correlation function C�

De�nition �
�� Let the integral operator T be de�ned for real�valued functions f on L��Rn�
by

Tf�x� ��
Z

C�x�y�f�y� dy� �����

where the kernel C lies in L��Rn � Rn�� is symmetric� that is� C�x�y� � C�y�x�� is con�
tinuous� and satis�es C�x�x� � 	� The operator T is called a correlation operator if it is
non�negative� that is� if

�Tf� f� �

Z Z
C�x�y� f�x� f�y� dxdy � � �����

for every real�valued f � L��Rn�� The kernel C of such an operator T is called a corre�
lation function on Rn� �

Formula ����� is just an in
nite�dimensional generalization of matrix�vector multiplication
in 
nite dimensions� and ����� is the corresponding in
nite�dimensional generalization of
the 
nite�dimensional condition expressed by De
nition ����

An assumption that correlation functions are continuous appears in De
nition ���� and is
utilized throughout much of the sequel� The Fourier analysis applied to correlation function
modeling in this article simpli
es when the correlation functions are assumed continuous�
Results can be established in this setting which otherwise would require more advanced
mathematical tools to establish� or which would not be true under more general assumptions�
In addition� self�convolution functions B� �B� over Rn are continuous whenever B� lies in
L��Rn� �e�g�� Stein and Weiss� 	��	� p� 	��� Theorems ��	� and ��	� below also illustrate
that the continuity assumption is not unduly restrictive�

�



De
nitions ��	� ���� and ��� are equivalent whenever the kernel C satis
es the conditions
of De
nition ���� To see that De
nition ��	 implies De
nition ���� let C be a continuous
correlation function

C�x�y� �
D
Y �x� Y �y�

E
for some zero�mean random 
eld Y � X� � X �� The linearity of the expectation
operator implies that Z Z

C�x�y� f�x� f�y� dxdy

�
Z Z D

Y �x� Y �y�
E
f�x� f�y� dxdy

�

�Z
Y �x�f�x� dx

Z
Y �y�f�y� dy

�

�

������
Z
Y �z�f�z� dz

�����
��

� ��

which is Eq� ������ The proof that De
nition ��� implies De
nition ��� is a simple gen�
eralization of the one�dimensional argument found� for example� in Gelfand and Vilenkin
�	���� pp� 	���	��� or Horn and Johnson �	���� pp� ���������

��� Homogeneity and Isotropy

Notions of homogeneity and isotropy for functions on Rn � Rn are de
ned below� and
a notion of isotropy on Sn�� � Sn�� is also introduced� The general context for these
de
nitions involves the action of a transitive group of motions on a homogeneous space�
and belongs to the theory of Lie groups �cf� Yaglom� 	���� pp� �������� Warner� 	���� pp�
	���	���� Although this context is not prerequisite to the material in this article� the reader
should understand that di
erent notions of homogeneity and isotropy exist due to the variety
of homogeneous spaces and transitive group actions on these spaces� The terminology
introduced below associates the notion of homogeneity with functions on Rn � Rn that
are invariant under the translation group acting on Rn� The notion of isotropy is de
ned
for functions on Rn � Rn and on Sn�� � Sn�� that are invariant under the orthogonal
group acting on Rn� This naming convention is common throughout the correlation theory
literature �cf� Yaglom� 	���� p� ���� p� ���� Yadrenko� 	���� p� 	��

De�nition �
�� If a function C�x�y� de�ned on Rn�Rn is componentwise invariant under
all translations T of Rn� that is� if

C�T �x�� T �y�� � C�x�y�� �����

then C is called homogeneous on Rn� �

Homogeneous functions de
ned on Rn �Rn can be represented by functions de
ned on Rn

as follows� Given the homogeneous function C�x�y�� de
ne

C��x� �� C�x� ��� �����

If Ty is translation by y�
Ty�z� � y z�

then
C��x � y� � C�x� y� �� � C�Ty�x� y�� Ty���� � C�x�y�� �����

�



The function C� will be said to represent the homogeneous function C� Observe that
formula ����� implies that C���� � 	 whenever C is a homogeneous correlation function�
Further� in this case C� is also an even function with respect to each of its arguments� by
virtue of the symmetry property ���	� of correlation functions�

C���y� � C���y� � C�y� �� � C��y�� �����

Functions satisfying Eq� ����� will simply be referred to as even functions�

De�nition �

� If a function C�x�y� de�ned on Rn�Rn �Sn���Sn��� is componentwise
invariant under all orthogonal transformations g of Rn� that is� if

C�g�x�� g�y�� � C�x�y�� �����

then C is called isotropic on Rn �Sn���� �

A rigid motion of Rn is any map � � Rn 	 Rn �not necessarily linear� that preserves the
Euclidean distance between any pair of points� i�e��

k��x�� ��y�k � kx� yk� x�y � Rn�

The orthogonal transformations g of Rn are rigid motions of Rn that are also linear trans�
formations� If g � Rn 	 Rn is an orthogonal transformation� then

kg�x� y�k � kg�x�� g�y�k � kx� yk� x�y � Rn�

where the 
rst equality is due to the linearity of g� and the second is due to the fact that g
is a rigid motion� Setting y � � yields

kg�x�k � kxk� x � Rn�

Thus� g is either a rotation of Rn� or a re�ection of Rn�

Translations of Rn are also rigid motions of Rn� but all translations except the identity
mapping are non�linear transformations� Given any n�vector w� the translation

Tw�z� � w z

is a rigid motion since

kTw�x�� Tw�y�k � kw x� �w y�k � kx� yk� x�y � Rn�

Observe that Tw�z� is a linear transformation if� and only if�

w x y � Tw�x y� � Tw�x�  Tw�y� � w x w y�

which holds if� and only if� w � �� In other words� the identity mapping

T��z� � z

is the only translation that is a linear transformation�

It is well known �cf� Thorpe� 	���� p� �	�� that if � is any rigid motion of Rn� then there
is a unique translation T of Rn� and a unique orthogonal transformation g of Rn� such that

� � T 
 g� ���	��

�



Using Eq� ���	��� it can be seen that the homogeneous and isotropic functions de
ned on
Rn � Rn are those functions that are componentwise invariant under all rigid motions of
Rn� Suppose that C is a homogeneous and isotropic function de
ned on Rn � Rn� If �
is any rigid motion of Rn� then by Eq� ���	��� � � T 
 g� where T is a translation acting
on Rn and g is an orthogonal transformation acting on Rn� Thus we have that

C���x�� ��y�� � C�T 
 g�x�� T 
 g�y�� � C�g�x�� g�y�� � C�x�y�� ���		�

where the second equality is due to homogeneity� and the third due to isotropy� C is
componentwise invariant under all rigid motions� On the other hand� since translations and
orthogonal transformations are both rigid motions� any function C such that

C���x�� ��y�� � C�x�y�

for each rigid motion � is both homogeneous and isotropic on Rn�

Suppose that C de
ned on Rn � Rn is both homogeneous and isotropic� Formulas ������
����� and the linearity of the orthogonal transformation g together imply that

C��x� � C�x� �� � C�g�x�� g���� � C�g�x�� �� � C��g�x��� ���	��

that is� C�
g � C� for each orthogonal transformation g ofR
n� Furthermore� if kxk � kyk�

there is an orthogonal transformation g� of R
n such that g��x� � y� and therefore

C��x� � C��g��x�� � C��y��

such a function C� is called radially symmetric� Therefore C��x � y� for any x and y
depends only on kx�yk� and there is an even function C� de
ned on R such that

C��kx� yk� �� C��x � y� �� C�x�y�� ���	��

The function C� will be said to represent the homogeneous and isotropic function C� and
the radially symmetric function C��

Since the translation group on Rn does not act on Sn��� the notion of homogeneity de
ned
above does not carry over from Rn to Sn��� The orthogonal group on Rn does act on
Sn��� however� since each orthogonal transformation g of Rn satis
es

kg�x�k � kxk � 	� x � Sn���

Suppose that a function C�x�y� de
ned on Sn�� � Sn�� is isotropic on Sn��� It is shown
next that C depends only on xTy� First observe that orthogonal transformations g of Rn

preserve inner products� since

xTy �
	

�

h
kxk�  kyk� � kx� yk�

i
�

	

�

h
kg�x�k�  kg�y�k� � kg�x� y�k�

i

�
	

�

h
kg�x�k�  kg�y�k� � kg�x�� g�y�k�

i
� g�x�T g�y��

Suppose that
xTy � wTz� x�y�w� z � Sn���

Let g� be an orthogonal transformation of R
n that takes x into w� i�e�� g��x� � w� Intro�

duce a local system of coordinates in which w is the n�vector
w �� �	� �� �� � � � � ��T �

�



Since
� �� wTz � xTy � g��x�

Tg��y� � wT g��y��

the leading component of both z and g��y� is just �� Write z and g��y� in component
form in this coordinate system�

z �� ��� u�� u�� � � � � un�
T and g��y� �� ��� v�� v�� � � � � vn�

T �

and denote
u �� �u�� u�� � � � � un�

T and v �� �v�� v�� � � � � vn�
T �

Since
	 � ��  kuk� � kzk� � kg��y�k� � ��  kvk��

it follows that p
	� �� � kuk � kvk�

Thus� there is an orthogonal transformation g� of R
n that 
xes w and takes g��y� into z�

i�e��
g� 
 g��x� � g��w� � w and g� 
 g��y� � z�

one such orthogonal transformation 
xes the 
rst coordinate direction w� and rotates the
vector v into u about the axis coincident with w� Since g �� g� 
 g� is also an orthogonal
transformation� De
nition ��� and the above imply that

C�x�y� � C�g�x�� g�y�� � C�w� z��

Thus C�x�y� depends only on xTy�

Since C�x�y� depends only on xTy� there is a function R� on ��	� 	� given by

R��x
Ty� �� C�x�y�� ���	��

The function R��x� for x in ��	� 	� will be said to represent the isotropic function C� Since

cos ��� � xTy �
	

�

h
�� kx� yk�

i
� x�y � Sn��� ���	��

where � is the angle between x and y� the isotropic functions C�x�y� on Sn�� can be
parameterized by ��

R��cos���� � R��x
Ty� � C�x�y�� �� � � ���

This parameterization is useful in theoretical work� since it provides a connection between
correlation functions on S� and correlation functions on R� see the proof of Theorem ��	�
below� Since R��cos���� is an even function of �� it su�ces to parameterize by great circle
�geodesic� distance�

R��cos���� � R��x
Ty� � C�x�y�� � � � � ��

By using Eqs� ���	�� and ���	��� the function C�x�y� can also be parameterized by Euclidean
distance in Rn �cf� Yadrenko� 	���� p� �	�� This Euclidean distance is commonly known as
chordal distance� Isotropic functions on Sn�� can be obtained� for example� by restricting
isotropic functions on Rn to Sn��� The argument following the proof of Theorem ��	�
illustrates this procedure�

Example ��� illustrates the application of De
nition ���� and also clari
es the notions of
homogeneity and isotropy introduced in this section�

�



Example �
	� Given an n � n positive de
nite matrix A� de
ne the so�called covariance
inner product �cf� Tarantola� 	���� p� �	���

C�x�y� �� xTAy � �Bx�T �By�� x�y � Rn� ���	��

where B is the �positive de
nite� square root of A� that is B� � A� Given any positive
integer m� any choice of points x��x�� � � � �xm in R

n� and any scalars c�� c�� � � � � cm� we have
that

mX
i�j��

�Bxi�
T �Bxj� cicj � kB�c�x�  c�x�  � � � cmxm�k� � ��

so that by De
nition ���� C is a covariance function on Rn� In general� C is neither
homogeneous nor isotropic on Rn� The restriction of C to Sn���Sn�� is also a covariance
function that is not isotropic� in general�

In the special case A � I � the covariance function de
ned by Eq� ���	�� reduces to the usual
inner product on Rn� This function is isotropic on Rn� since orthogonal transformations
g of Rn preserve the usual inner product� It is not homogeneous� since there are many
vectors z � Rn for which

�x z�T �y z� �
	

�

h
kx zk� ky zk��kx� yk�

i

� 	

�

h
kxk� kyk��kx� yk�

i
� xTy�

The restriction to Sn�� of the usual inner product on Rn yields Eq� ���	��� which is a
correlation function on Sn�� by the argument above� The function R��x� �� x represents
this correlation function�

R��cos���� � R��x
Ty� � xTy� x�y � Sn���

An example of a homogeneous correlation function on Rn that is not isotropic is given by

C�x�y� �� exp��jx� � y�j� exp��jx�� y�j� � � � exp��jxn � ynj��

where x �� �x�� x�� � � � � xn�
T and y �� �y�� y�� � � � � yn�

T �Yaglom� 	���� p� ����� �

��� Characterization of Correlation Functions

The following de
nition of the Fourier transform for L��Rn� functions� together with the
Fourier inversion theorem� is found in Folland �	���� pp� ���������

Theorem �
�� The Fourier transform� or n�dimensional spectral density� of a function C�

in L��Rn� is de�ned by

!C��w� �� F �C���w� �
Z
exp��iw � r�C��r� dr� ���	��

If C� is continuous and !C� is also in L��Rn�� then C� can be recovered from the inverse
Fourier transform�

C��r� ��
	

����n

Z
exp�iw � r� !C��w� dw� ���	��

�

	�



If C� is a function lying in both L��Rn� and L��Rn�� then it is known �see Theorem ���

below� that the L��Rn� norms of C� and !C� are related throughZ
C��r�

� dr � �C�� C�� � �����n� !C�� !C�� �
	

����n

Z ��� !C��w�
���� dw� ���	��

The mapping
	 � L��Rn�� L��Rn�	 L��Rn�� 	�C�� � !C��

is implied by Eq� ���	��� This mapping is known to extend to a mapping from L��Rn�
onto L��Rn� through a limiting process described� for instance� in Stein and Weiss �	��	�
p� 	�� and in Rudin �	���� pp� 	���	���� The extension de�nes the Fourier transform of
a function C� lying in L��Rn�� Plancherel"s theorem �e�g�� Folland� 	���� p� ����� stated
below as Theorem ���� is also obtained from the aforementioned limiting process�

Theorem �
�� If C� and C� are functions in L��Rn�� and if !C� and !C� are the L��Rn�
Fourier transforms of C� and C�� thenZ

C��r�C��r� dr � �C�� C�� � �����n� !C�� !C�� �
	

����n

Z
!C��w� !C��w�dw� ������

�

Throughout most of this article� the Fourier transform will be applied to functions in
L��Rn� � L��Rn�� Radially symmetric functions on Rn represented by piecewise contin�
uous� compactly supported functions on R� used to construct correlation functions in this
article� always lie in L��Rn��L��Rn�� The L��Rn� and L��Rn� Fourier transforms agree
in this case� and both the L��Rn� and L��Rn� Fourier theories apply� A standard result of

the L��Rn� theory is that the Fourier transform !C� of C� � L��Rn� is continuous �Stein
and Weiss� 	��	� p� ��� and this fact is exploited repeatedly in the sequel�

Theorem ��� is a form of the multidimensional Convolution Theorem �Stein and Weiss� 	��	�
Theorem ���� p� 	��� Continuity of the convolution function follows from the argument
given in Stein and Weiss �	��	� Theorem ��	� p� 	��� while Eq� ������ below holds for every
w by the continuity of the L��Rn� Fourier transform� Theorem ��� serves as a foundation
for most of the constructive theory developed in this article�

Theorem �
�� Suppose that B� and B� are both in L��Rn� � L��Rn�� Let B� be the
convolution of B� with B� over Rn �denoted by B� �� B� �B��� de�ned by

B� �x� ��

Z
B��y�B��x � y� dy �

Z
B��y�B��x � y� dy� ����	�

The function B� is continuous and lies in L��Rn� � L��Rn�� The n�dimensional Fourier
transforms of B�� B�� and B� are related by

!B��w� � !B��w� !B��w�� ������

�

Theorem ���� coupled with other results to follow� will be applied to construct covariance
functions through self�convolution� B� � B� �B�� Observe for now that if B� is compactly
supported on the sphere of radius c centered at the origin in R�� then B� is compactly
supported on the sphere of radius �c centered at the origin in R�� Of primary importance
in this article will be the case where B� is a radially symmetric function represented by a

		



piecewise continuous and compactly supported function B� on R� and such functions are in
L��Rn� � L��Rn��

Theorem ��	� combines a version of Bochner"s original theorem �Bochner� 	���� with a
classical result �Stein and Weiss� 	��	� Corollary 	���� p� 	��� into a statement which is
convenient for the development in this article� Theorem ��		� due to Schoenberg �	�����
completely characterizes the continuous isotropic correlation functions on spheres�

Theorem �
��� Let C� be any function de�ned on Rn which is continuous� lies in L��Rn��
and satis�es C���� � 	� Then the function

C�x�y� �� C��x � y�

is a homogeneous correlation function on Rn if� and only if� the Fourier transform !C� of C�

is everywhere nonnegative� that is� !C��w� � � for each w in Rn� If C is a homogeneous

correlation function� then !C� is in L��Rn�� In this case� C� is given by Eq� ���	
��

Proof� Since C� is continuous and lies in L��Rn�� C� also lies in L��Rn�� Let T be
the correlation operator given by ����� with the kernel C represented by C�� Given f
in L��Rn�� L��Rn�� Theorem ��� implies that

F �Tf ��w� � !C��w� !f�w�� ������

Theorem ��� together with ������ imply that

�Tf� f� � �����n �F �Tf �� !f� � �����n � !C�� j !f j� �� ������

If !C� is everywhere nonnegative� then the operator T is nonnegative on L
��Rn� � L��Rn�

by ������� Since L��Rn� � L��Rn� is a dense subspace of L��Rn�� it follows that T is
nonnegative on L��Rn� as well� De
nition ��� implies that C is a correlation function�

Conversely� if !C� is negative at a single point in Rn� then by continuity of the L��Rn�

Fourier transform� it is negative in some neighborhood of this point� Let h be such that !h is
one on this neighborhood� and zero otherwise� Then ������ implies that �Th� h� is negative�
so that the converse is established� The proof of the last assertion is given in Stein and
Weiss �	��	� Corollary 	���� p� 	��� �

Now let B� be an even function satisfying the hypothesis of Theorem ��� �it is evident
from ����� that B� could� for instance� represent a homogeneous function on Rn�� From

Eq� ���	�� it follows that !B��w� is real� and therefore if B� �� B� � B�� then Theorem ���

implies that !B��w� � !B��w�
�� which is nonnegative� Further�

B���� �
Z
B��y�B���y� dy �

Z
B��y�

� dy ������

is positive� assuming� for instance� that the support of B� has positive measure� Theo�
rems ��� and ��	� imply that C��x� �� B��x� � �B�����

�� represents a homogeneous correla�
tion function on Rn�

The following argument further clari
es the relation between De
nition ���� Theorem ����
and Theorem ��	�� If the operator T is the convolution

Tf�x� ��

Z
B��x� y�f�y� dy � �B� � f��x�� ������

	�



then the composition T � of T with itself is

T �f�x� � T ��B� � f��x�� � �B� �B�� � f�x�� ������

so that T � has the self�convolution function B� � B� as its kernel� If B� is even� then T �

is a nonnegative operator� and since B���� is positive� the operator with kernel C� is also
nonnegative� so that C� represents a homogeneous correlation function on R

n�

Theorem �
��� Let C be a continuous isotropic function on the �n� 	��dimensional unit
sphere Sn��� represented by the function R��cos���� de�ned by

R��cos���� � R��x
Ty� �� C�x�y��

where � � R is the angle �read� great circle distance if � � � � �� between the two points x
and y on Sn��� Then C is a correlation function if� and only if� the function R� has the
form

R��cos���� �
�X

m��

amCm
n��

� �cos ��� ������

where Cm
n��

� are Gegenbauer polynomials of degree m and order n��
� � and where the coef�

�cients am are all nonnegative and satisfy
P�

m�� amCm
n��

� �	� � 	� �

Remarks� Gegenbauer polynomials� also known as ultraspherical polynomials� or as n�
dimensional zonal surface harmonics� are de�ned in Folland �	���� p� 	�
�� for instance�
Using Eq� ���	��� Eq� ����
� can also be parameterized by chordal distance� The conditionP�

m�� amCm
n��

� �	� � 	 arises from the fact that Theorem ��		 is stated for correlation
functions


�X
m��

amCm
n��

� �	� � R��	� � 	�

�

The cases S� and S� in Theorem ��		 are of primary interest here� All continuous isotropic
correlation functions on the unit circle S� can be represented by Fourier cosine expansions

R��cos���� �
�X

m��

am cos �m��

with all Fourier coe�cients am nonnegative� while all continuous isotropic correlation func�
tions on the unit sphere S� can be represented by Legendre expansions

R��cos���� �
�X

m��

amPm�cos ��

with all Legendre coe�cients am nonnegative� Since S� is a subset of S�� correlation func�
tions on S� can also be obtained by restriction to S� of correlation functions on S�� as
remarked following De
nition ����

Theorem ��		 characterizes completely the class of continuous isotropic correlation functions
on Sn��� It will be shown in Section ��b that space�limited correlation functions on S� can
never be obtained from �nite Legendre expansions� Theorem ��		 therefore cannot be
applied directly in practice to construct space�limited correlation functions� Note� however�
that space�limited correlation functions on S� may still be approximated by 
nite Legendre

	�



expansions with nonnegative coe�cients� Such an approximation has been developed by
Courtier et al� �	�����

If C is any homogeneous and isotropic function de
ned on R � R� then the representing
functions C� and C� in Eq� ���	�� are identical� Applied to R� Theorem ��	� therefore shows
that C is also a correlation function on R whenever C� has an everywhere nonnegative
Fourier transform !C�� Theorem ��	� below shows that if !C� decreases monotonically as a
function of positive wavenumber� then in fact !C� is everywhere nonnegative� and furthermore
that C� represents a homogeneous and isotropic correlation function on R�� Restricting
such a correlation function on R� to S� gives an isotropic correlation function on S�� Next
to the convolution theorem� Theorem ��	� is the most important basic result in this article
for construction of correlation functions on R� and S�� Yaglom �	���� p� ���� provides a
di
erent proof� valid for Rn�

Theorem �
��� Suppose that C is a homogeneous and isotropic function on R�� repre�
sented by the radially symmetric function C� on R�� and by the even function C� de�ned
on R by

C�x�y� �� C��x � y� �� C��kx� yk��
where k�k denotes Euclidean distance in R�� Suppose that C� is continuous� lies in L

��R���

and satis�es C���� � 	� Then the one�dimensional Fourier transform !C� of C� is di�er�

entiable� The function C is a correlation function if� and only if� !C� is a monotonically
decreasing function of wavenumber w for w � �� If C is a correlation function� then !C� is
everywhere nonnegative�

Proof� It is known �Folland� 	���� p� ���� that !C� is a radially symmetric function of
three�dimensional wavenumber w� Changing to spherical coordinates yields

!C���� �
Z
C��r� dr � ��

Z �

�
C��r� r

� dr� ������

with the 
rst equality in Eq� ������ obtained from Eq� ���	��� The fact that C� is even�
together with Eq� ������� implies that r�C��r� lies in L

��R�� Since C� is also continuous�

it follows that rC��r� lies in L
��R�� Thus !C� is di
erentiable� and

i
d !C��w�

dw
� F �rC���w� � ��i

Z �

�
C��r� r sin�wr� dr� ������

the latter equality resulting from the fact that rC��r� is an odd function� cf� Folland
�	���� p� �	���

Applying the Hankel transform of C� yields �e�g�� Folland� 	���� p� �����

!C��w� �
��

kwk
Z �

�
C��r� r sin�kwkr� dr� kwk 
� �� ����	�

Using ������ and ����	�� the relation

!C��w� � � ��

kwk
d !C��kwk�
dkwk ������

holds for kwk 
� �� and implies that !C��w� is nonnegative for kwk 
� � if� and only if� !C��w�
is a monotonically decreasing function of wavenumber w for w � �� If C is a correlation

	�



function� then Theorem ��	� implies that !C� is everywhere nonnegative� so that !C��w� is

monotonically decreasing for w � �� Conversely� if !C��w� is monotonically decreasing for

w � �� then !C��w� is nonnegative for kwk 
� �� and is nonnegative for w � � by Eq� �������
Theorem ��	� implies that C is a correlation function�

The proof of the last assertion uses the Riemann�Lebesgue lemma for C� to yield

!C��w� � �
Z �

w

d !C��t�

dt
dt�

implying that !C��w� is nonnegative for w � �� Because !C��w� is an even function of w�
!C��w� is nonnegative for each w � R� �

The homogeneous and isotropic correlation functions obtained using Theorem ��	� depend
only on Euclidean distance in R�� These functions can in turn be restricted to isotropic
correlation functions on S� �depending only on chordal distance on S��� Chordal distance
r on S� and great circle distance � are in a one�to�one correspondence given by

r � r��� � � sin

�
�

�

�
�
q
��	� cos����� � � � � �� ������

By parameterizing r in this manner� isotropic correlation functions on S� are seen to depend
only on cos���� or alternatively� only on great circle distance �� cf� Eq� ���	���

For example� consider the well�known second�order autoregressive function �SOAR� Daley�
	��	� p� 		�� Balgovind et al�� 	���� p� �	���

C��r� ��

�
	  

jrj
L

�
exp

�
�jrj
L

�
� ������

where jrj represents Euclidean distance in R�� The hypotheses of Theorem ��	� are readily
veri
ed for this function� The one�dimensional Fourier transform �Yaglom� 	���� p� 	���
given by

!C��w� �
�L

�	  w�L���
� ������

is a monotonically decreasing function of w for w � �� and is also everywhere nonnegative�
According to Theorem ��	�� C� represents a homogeneous and isotropic correlation function
on R�� which in turn is restricted to S� using Eq� ������ �e�g�� Yaglom� 	���� p� ���� Weber
and Talkner� 	���� p� ��	���

C��r���� �

�
	  

� sin��
��

L

�
exp

�
�� sin��
��

L

�
� � � � � �� ������

Equivalently� using the notation of Theorem ��		�

R��cos���� � C��r���� �

�
	  

p
� �	� cos����

L

�
exp

�
�
p
� �	� cos����

L

�
� �� � � ���

��� Smoothness Properties of Correlation Functions

Theorems ��	� and ��	� summarize well�known smoothness properties of homogeneous and
isotropic correlation functions on Rn� and of isotropic correlation functions on Sn �Yaglom�

	�



	���� pp� ������ Christakos� 	���� p� ���� These two theorems imply that the smoothness
of such correlation functions is controlled by the smoothness of their representing functions
at the origin�

Theorem �
��� Suppose that C is a homogeneous and isotropic correlation function on
Rn� and let C� denote the even function on R representing C by

C��kx� yk� �� C�x�y��

where k � k denotes Euclidean distance in Rn� If C� has a continuous derivative C�
��k� of

order �k at zero for a given k � �� then C� has a continuous derivative of order �k at each
point of R� In this case� each of the functions

��	�jC�
��j��r�

C�
��j����

� j � �� 	� �� � � � � k�

represents a correlation function on R �under De�nition ��	 or ����� �

Yaglom �	���� pp� ������ proves that even functions C� on R that are continuous at the
origin and represent covariance functions on R� are in fact everywhere continuous on R� see
also Christakos �	���� p� ���� He shows further that if such a function C� has two continuous

derivatives at the origin� then �C�
��

represents a covariance function on R� Theorem ��	�
follows from these results and induction on k�

Theorem �
��� Suppose that C is an isotropic correlation function on Sn� and let R��cos����
be the function representing C


R��cos���� � R��x
Ty� �� C�x�y��

where � � R is the angle �read� great circle distance if � � � � �� between x and y� If

R��cos���� has a continuous derivative R�
��k��cos���� of order �k at � � � for a given k � ��

then R��cos���� has a continuous derivative of order �k at each point of R�

Proof� The restriction of C to S� � S� is an isotropic correlation function on S� which
is also represented by R��cos����� According to Theorem ��		� R� can be written as a
Fourier cosine series

R��cos���� �
�X

m��

am cos �m���

where am � � for each m� For each m � �� cos �m�� represents a correlation function on
R �under De
nition ��	 or De
nition ����� see Yaglom �	���� p� 	���� for instance� Since
R��cos���� is the sum of the functions am cos �m��� R��cos���� represents a correlation
function on R� Thus Theorem ��	� implies Theorem ��	�� �

� Correlation Modeling on R�

This section is organized into three parts� Section ��a provides results which show that
homogeneous and isotropic correlation functions on R� can be obtained by self�convolution�
and furthermore� that arbitrarily smooth correlation functions can be obtained in this man�
ner� Section ��b illustrates practical limitations of spectral correlation models obtained
from 
nite Fourier or 
nite Legendre expansions� Results in Section ��c aid in evaluation
of self�convolution integrals over R�� Applications of these results are given in Section ��

	�



��� Self�convolution Correlation Theory

Modeling correlation functions through convolutions is motivated by well�recognized phys�
ical ideas� Convolution typically has a broadening and smoothing e
ect� The broadening
e
ect is witnessed by the well�known fact that the probability density function of the sum
of two independent random variables is the convolution of the probability density functions
of the two random variables �e�g�� Papoulis� 	���� pp� 	���	���� When the variances are

nite� the independence of the random variables implies that the variance of this sum is
the sum of the variances� hence the convolution function is broader than the two functions
being convolved� Theorem ��a�� illustrates the smoothing e
ect of self�convolution over R��

Convolution is the primary tool used for modeling correlations of one�dimensional time
signals in electrical engineering� In fact� autocorrelation functions for 
nite�energy signals
are de�ned by self�convolutions over R �Papoulis� 	���� pp� ��	������ The convolution
approach to correlation modeling in two and three dimensions was used by Oliver �	����
to generate multidimensional Gaussian random 
elds�

This section provides comprehensive results concerning homogeneous and isotropic corre�
lation functions on R� that are obtained by self�convolution� Theorem ��a�� asserts that
homogeneous� isotropic correlation functions on R� can be constructed by self�convolution
of compactly supported� radially symmetric functions on R�� and establishes smoothness
properties of these correlation functions� A proof of this theorem is given in the Appendix�
Theorem ��a�� shows that correlation functions on R� can also be obtained through self�
convolution over R� rather than R�� of functions representing homogeneous and isotropic
correlation functions on R�� Theorem ��a�� provides a converse of Theorem ��a���

The following result establishes that convolutions of radially symmetric functions are also
radially symmetric�

Theorem �
a
�� Suppose that B� and B� are radially symmetric functions in L��Rn� �
L��Rn�� Let C� �� B� � B� be the convolution of B� and B� over Rn� Then C� is a
radially symmetric function that represents the homogeneous and isotropic function C on
Rn given by

C�x�y� �� C��x � y��

Proof� The function C� satis
es the following relation�

C��g�y�� �
Z

B��x�B��g�y� � x� dx

�

Z
B��g�v��B��g�y� � g�v�� dv

�

Z
B��g�v��B��g�y � v�� dv � C��y� ���a�	�

for each orthogonal transformation g of Rn and every y � Rn� The 
rst equality in ���a�	�
follows from Theorem ���� the second follows from the fact that dx � dv because the
orthogonal transformation x � g�v� is volume�preserving� the third follows because g is
a linear transformation� and the fourth follows from the radial symmetry of B� and B��
Equation ���a�	� establishes that C� is radially symmetric� The function C is homogeneous
by de
nition� and is shown to be isotropic by applying ���a�	� with y replaced by x�y�

C�x�y� � C��x � y� � C��g�x�y��

	�



� C��g�x� � g�y�� � C�g�x�� g�y���

�

De�nition �
a
�� Suppose �� � a � b � �� The function f is piecewise continuous
on �a� b� provided that f is continuous there except at �nitely many jump discontinuities�
If� in addition� the derivative f � of f is piecewise continuous� then f is said to be piecewise
smooth on �a� b�� �

Theorem �
a
�� Let B� be the even function on R and let B� be the radially symmetric
function in L��R�� � L��R��� representing a homogeneous and isotropic function B on R�

by
B�x�y� �� B��x � y� �� B��kx� yk��

where k�k denotes Euclidean distance in R�� Let C� denote the radially symmetric function
on R� given by the self�convolution C� �� B� �B� over R� �see Theorem ��a�	�� Then C�

is continuous and lies in L��R�� �see Theorem ����� Suppose that B� is compactly supported

with support ��c� c�� Let h��r� �� rB��r�� and denote by h�
�����r� the function de�ned on

R by

h�
�����r� ��

Z r

�c
h��s� ds�

Suppose that h�
�n� is continuous and piecewise smooth for a given n � �	� Let C� be the

even function on R given by

C��kx� yk� �� C��x � y��

Then C��r� is compactly supported with support ���c� �c�� has at least �n  � continuous
derivatives everywhere on R except possibly at r � � and r � ��c� and has at least �n �
continuous derivatives everywhere on R� Furthermore� if

C�x�y� �� C��x � y��

then C�x�y�
C���� is a continuous� homogeneous and isotropic correlation function on R��

Remark� Since h�
���� is di�erentiable at each point of continuity of h� by the fundamental

theorem of calculus� the hypothesis that h�
���� be continuous and piecewise smooth is the

same as the hypothesis that h��r� � rB��r� be piecewise continuous� �

Theorem ��a�� gave smoothness properties of compactly supported� homogeneous and isotropic
correlation functions on R� that are obtained through self�convolutions over R�� Self�
convolution correlation functions with these smoothness properties will actually be con�
structed in Sections ��c and �� Theorem ��a�� shows that if B� represents a homogeneous
and isotropic correlation function on R�� then the self�convolution

C��r� �� B� �B��r� � �B� �B�����
��

over R represents yet another homogeneous and isotropic correlation function on R�� Ad�
ditional homogeneous and isotropic correlation functions on R� can be obtained by iterating
this procedure� The function B� needed to initialize the procedure can be obtained through
Theorem ��a��� for instance� as is illustrated by the examples in Section ��

Theorem �
a
�� Let B� be the even function on R and let B� be the radially symmet�
ric function in L��R��� representing a continuous� homogeneous and isotropic correlation
function B on R� by

B�x�y� �� B��x � y� �� B��kx� yk��

	�



where k � k denotes Euclidean distance in R�� Then the convolution function

C��r� � B� �B��r� � �B� �B�����
��

over R represents the continuous� homogeneous and isotropic correlation function C on R�

de�ned by
C�x�y� �� C��kx� yk��

Proof� Since B� is continuous and lies in L��R�� B� also lies in L��R�� Theorem ���
implies that the convolution function C� is continuous� lies in L

��R� � L��R�� and that

!C��w� � !B��w�
� � �B� �B�����

��� ���a���

Since B and its representatives B� and B� satisfy the hypotheses of Theorem ��	�� !B��w�
is di
erentiable� so that by Eq� ���a����

d !C��w�

dw
� � !B��w�

d !B��w�

dw
�B� �B�����

��� ���a���

Combining Eq� ���a���� Eq� ������� and the restatement of Eq� ������ for B� and B��

!B��w� � � ��

kwk
d !B��kwk�
dkwk � w � R�� kwk 
� ��

yields the relation
!C��w� � � !B��kwk� !B��w��B� �B�����

��� ���a���

valid for kwk 
� �� Since both sides of Eq� ���a��� are continuous functions on R�� this

equality holds at w � � as well� Since !B��kwk� and !B��w� are everywhere nonnegative for
each w � R� by Theorems ��	� and ��	� respectively� and since

B� �B���� �
Z

B��r�
� dr � ��

!C��w� is everywhere nonnegative by Eq� ���a���� Thus� by Theorem ��	�� C is a correlation
function� �

Remark� Since the hypotheses on B� and B� are satis�ed by C� and C� �see Theorem �����
the iterative procedure described before the statement of Theorem ��a�� is justi�ed� �

Theorem ��a�� shows that all continuous and integrable functions C� on R that also represent
correlation functions are� in fact� self�convolutions over R� A proof of this theorem is
given in the Appendix� Note that the most important case for this article is the one in
Theorem ��a�� above� where C� represents a homogeneous and isotropic correlation function
on R��

Theorem �
a

� Let C� be any continuous even function in L��R� such that C���� � 	

and !C� is everywhere nonnegative� Then there is a square�integrable function D� de�ned
on R so that C� � D� �D�� If C� is also twice continuously di�erentiable and C�

��

lies in
L��R�� then there is a continuous even function F� that lies in L��R� and satis�es

C� � F� � F�� ���a���

	�



Suppose it is known in addition that C� represents the homogeneous and isotropic correlation
function C on R� and the radially symmetric function C� lying in L��R�� de�ned by

C�x�y� �� C��x � y� �� C��kx� yk��
where k � k denotes Euclidean distance in R�� Then F��r�
F���� also represents a homo�
geneous and isotropic correlation function on R��

��� Some Limitations of Spectral Covariance Modeling

Two results which illustrate practical limitations of spectral covariance modeling are proven
in this section� The 
rst result shows that compactly supported functions on R representing
homogeneous and isotropic correlation functions on R� cannot be obtained through 
nite
Fourier series� The second result shows that space�limited isotropic correlation functions
on S� cannot be obtained through 
nite Legendre expansions�

Theorem �
b
�� Suppose that the continuous even function C� de�ned on R and com�
pactly supported on ��c� c� represents the homogeneous and isotropic correlation function C
on R� by

C�x�y� �� C��kx� yk��
where k � k denotes Euclidean distance in R�� Then every coe�cient of the Fourier series
representation of C� on ��c� c� is nonzero�

Proof� Since C� is continuous on R� it agrees with its Fourier series representation on
��c� c�� which is

C��r� �
�X
��

ck exp
�k�ri

c

	
� jrj � c� ���b�	�

where the Fourier coe�cients are given by

ck �
	

�c

Z c

�c
C��r� exp

�
�k�ri

c

	
dr ���b���

�
	

�c

Z �

��
C��r� exp

�
�k�ri

c

	
dr �

	

�c
!C�

�k�
c

	
�

Since C� is an even function on R�

C��r� �
	

�c
!C����  

	

c

�X
k��

!C�

�k�
c

	
cos

�k�r
c

	
� jrj � c� ���b���

Theorem ��	� implies that !C��w� is a monotonically decreasing function of wavenumber w

for w � �� as well as everywhere nonnegative� Therefore� if the Fourier coe�cient !C��j�
c�

is zero� then !C��w� � � for each w � �j�
c�� In particular� the sum in ���b��� terminates
at the �j � 	�st term� This violates Heisenberg"s inequality �Folland� 	���� p� ����� which
implies that C� and !C� cannot both be compactly supported� �

Theorem �
b
�� Let R��cos���� be the continuous function de�ned on R which represents
the space�limited isotropic correlation function C on the unit sphere S� by

C�x�y� �� R��x
Ty� � R��cos����� x�y � S��

��



where � is the great circle distance between x and y� Then the Legendre expansion

R��cos���� �
�X

m��

amPm�cos �� ���b���

has in�nitely many positive coe�cients am�

Proof� Suppose that the expansion ���b��� terminates at m � j� Then the 
nite sum

R��cos���� �
jX

m��

amPm�cos ��� ���b���

where am � � for each m� aj � �� and
Pj

m�� am � 	� is a polynomial in cos � of exact
degree j� since the Legendre polynomials Pm have degree m� The fundamental theorem of
algebra implies that there are at most j roots of the polynomial

jX
m��

amPm�x�� �	 � x � 	� ���b���

Since cos � is injective for � � � � �� the sum ���b��� vanishes for at most j di
erent
values of �� Finite expansions of the form ���b��� therefore cannot represent space�limited
functions� �

��� Calculation of Convolution Integrals for Radially Symmetric Func�
tions

Given any m radially symmetric functions
B�� B�� � � � � Bm in L��R�� � L��R��� Theorem ��a�	 implies that

Cij�x� ��
Bi �Bj�x�

�Bi �Bi��� �Bj �Bj����
���

���c�	�

are all radially symmetric on R�� Theorem ��a�� implies that each Cii represents a homo�
geneous and isotropic correlation function� under appropriate conditions on the functions
Bi� Similarly� the Cij for i 
� j represent radially symmetric cross�correlation functions� in
accordance with the terminology used in Papoulis �	���� pp� ��������� for instance�

Theorem ��c�	 exploits this radial symmetry to give expressions for the three�dimensional in�
tegrals Bi�Bj�x�� with the functions Cij�x� determined by Eq� ���c�	�� The triple integrals
Bi � Bj�x� are 
rst reduced to two�dimensional integrals given by Eqs� ���c��� and ���c����
These integrals can be simpli
ed analytically under appropriate conditions� as shown in the
Appendix� If ci 
� cj � then the analytic expression given by Eq� �A���� has 
ve branches�
and if ci � cj � then this expression collapses to two branches� The latter case is stated as
Corollary ��c��� and illustrated by Examples ��b and ��c�

Although the formulas given in Theorem ��c�	 and Corollary ��c�� apply when the functions
Bi are in
nitely supported� the case of primary interest in this article is where each function
Bi is supported on a sphere of 
nite radius ci� In this case� the functions Cij are supported
on spheres of radii ci  cj � The geometry involved in the reduction of the integrals is
visualized by imagining the collision of two solid spheres of radii ci and cj � with the 
rst point

�	



of contact when the centers are at distance ci cj � The functions obtained by intersecting
the Cij with S

� are space�limited isotropic functions� for each 
xed x � S�� the isolines of

Cij�x� y�� y � S�

are circles�

Theorem �
c
�� Suppose that Bi is a radially symmetric function in L��R�� � L��R��
and supported on the sphere of radius ci� � � ci � �� for i � 	� �� � � �m� Let Bi

� and Pij
�

denote the even representing functions on R given by

Bi
��krk� �� Bi�r� and Pij

��krk� �� Pij�r��

where Pij is the function on R� de�ned by

Pij�r� �� �Bi �Bj��r� �
Z

Bi�v�Bj�r � v� dv� ���c���

and where k � k denotes Euclidean distance� If ci � cj� then

Pij
��z� �

��

z

ciZ
�

rBi
��r�

r�zZ
jr�zj

sBj
��s� ds dr ���c���

for z � �� while

Pij
���� � ��

ciZ
�

r�Bi
��r�Bj

��r� dr� ���c���

for i� j � 	� �� � � �m�

Proof� The convolution integral ���c��� can be written as

Pij
��kvk� �

Z
Bi

��krk�Bj
��kv � rk� dr� ���c���

By choosing v along the positive z�axis� that is v � ��� �� z�T where z � �� the integral
���c��� can be written as

Pij
��z� �

Z
Bi

��krk�Bj
��kv � rk� dr� ���c���

Changing to the spherical coordinates �r� 	� ��� where 	 and � are longitude and latitude
respectively� yields

Pij
��z� � ��

ciZ
�

r�Bi
��r�

�
�Z

��
�

Bj
�
�
�r�  z� � �zrsin �����

	
cos � d� dr� ���c���

By substituting z � � into ���c���� the formula ���c��� for Pij
���� results�

Assume now that z � �� Recall that the argument of Bj
� in the � integral of ���c���

is just kv � rk� This geometry motivates the change of variable u � sin � followed by
w � r�  z� � � zru� which reduces ���c��� to

Pij
��z� �

�

z

ciZ
�

rBi
��r�

�r�z��Z
�r�z��

Bj
��w���� dw dr� ���c���

��



Finally� the substitution w � s� yields Eq� ���c���� �

There is no loss of generality in the assumption that ci � cj in the statement of Theo�
rem ��c�	� the formulas in case cj � ci are obtained simply by interchanging the roles of ci
and cj �

Corollary �
c
�� In Theorem ��c�	 suppose that c �� ci � cj for some i and j� The
formula ���c��� for the function Pij

��z� simpli�es to

Pij
��z� �


�
�
f��z� � � z � c
f	�z� c � z � �c
� �c � z

�

where f��z� and f	�z� are given in Eq� �A����� �

	 Examples of Convolution Correlation Functions

The constructive development of convolution correlation functions is illustrated in this sec�
tion� The 
rst two examples show that the SOAR function ������ and the third�order
autoregressive �TOAR� function are obtained by self�convolution over R and R�� respec�
tively� of the exponential function

B��r� � exp

�
�jrj
L

�
� ���	�

The exponential� SOAR� and TOAR functions are the standard autoregressive functions
associated with 
rst�� second�� and third�order Gauss�Markov processes� respectively �Gelb�
	���� pp� �������

Families of compactly supported SOAR� and TOAR�like functions are constructed in these
two examples by self�convolving the discontinuous function

B��r�Ic�r� � exp

�
�jrj
L

�
Ic�r�� �����

where Ic is the indicator function de
ned by

Ic�x� ��



	 �c � x � c

� otherwise
�

over R and R�� respectively� These SOAR� and TOAR�like functions represent continu�
ous� homogeneous and isotropic correlation functions on R and R�� respectively� Cross�
correlation functions for the TOAR�like model are also obtained� Another family of com�
pactly supported TOAR�like functions is constructed by self�convolving the continuous func�
tion �

exp

�
�jrj
L

�
� exp

�
� c

L

��
Ic�r�

over R�� resulting in twice continuously di
erentiable� homogeneous and isotropic correla�
tion functions on R��

Example ��c provides a family of compactly supported �th�order piecewise rational func�
tions� each of which represents a twice continuously di
erentiable� homogeneous and isotropic

��



correlation function on R�� These functions� along with the TOAR�like functions� repre�
sent space�limited isotropic correlation functions on S� through the parameterization �������
Example ��d describes a method of modifying correlation functions on S� that are not space�
limited� to construct a class of space�limited correlation functions with properties similar
to those of the non�space�limited class�

��� Compactly supported SOAR�like functions

The one�dimensional Fourier transform !B��w� of the exponential function ���	� is given by
Yaglom �	���� p� 		���

!B��w� �
�L

	  w�L�
� �����

Recall that the SOAR function

C��r� ��

�
	  

jrj
L

�
exp

�
�jrj
L

�
������

has the one�dimensional Fourier transform

!C��w� �
�L

�	  w�L���
� ������

The relation
!C��w� �

h
L���� !B��w�

i�
�

together with Theorem ���� demonstrate that C��r� is the self�convolution of L
���� �B��r�

over R�

Both B��r� and C��r� represent correlation functions on R according to Theorem ��	��
and also represent correlation functions on R� according to Theorem ��	�� A compactly
supported approximant of C��r�� which will be denoted by f�r� L� c�� is obtained by self�
convolving the function

D��r� L� c� ��

�
L
h
	� exp

�
��c
L

	i�����
exp

�
�jrj
L

�
Ic�r�

over R� The function f�r� L� c� is given on its support by

f�r� L� c� � �D��D���r� L� c� �

�
	� exp

�
��c
L

	���
�
�
C��r�� exp

� jrj � �c
L

	�
� � � jrj � c�

�

�
	� exp

�
��c
L

	���
�
��c� jrj

L

	
exp

�
�jrj
L

	
� c � jrj � �c� �����

The function D��r� L� c� is continuous at r � �� yet discontinuous at r � c� It therefore

follows from Theorems ��	� and ��	� that !D��w� crosses the w�axis� In fact� direct calcula�

tion shows that !D��w� decays like a damped�sinusoid� intersecting the w�axis a countably
in
nite number of times �cf�� Papoulis� 	���� p� ���� The Fourier transform of f�r� L� c��
given by

!f �w� � !D��w�
�
�

��



is everywhere nonnegative� but also has a countable in
nity of zeros along the w�axis� By
Theorem ��	�� f�r� L� c� represents a correlation function on R� It is evident however� that
!f�w� does not decrease monotonically for w � �� so that by Theorem ��	�� f�r� L� c� does not
represent a homogeneous and isotropic correlation function on R�� As c tends to in
nity�
the oscillations of !f�w�L� c� disappear� and f�r� L� c� tends to the SOAR function C��r��
which does represent a homogeneous and isotropic correlation function on R�� Figure 	 is
a graph of f�r� L� c� for c � 	��� km and c � ���� km� with L � ��� km� along with the
SOAR function with L � ��� km�

��� Compactly supported TOAR�like functions

Given the m radially symmetric functions B�� B�� � � � � Bm on R
� represented by

Bi
��r� � exp

�
�jrj
Li

�
Ici�r�� �����

the two�dimensional integrals in Eq� ���c��� can be evaluated analytically through formula
�A����� The resulting expressions for Pij

��z� are rather complicated when ci 
� cj or Li 
�
Lj � and are not given here� Instead� the functions

Cij
��z� ��

Pij
��z�

�Pii
���� � Pjj��������

�����

representing Cij�x� �see Eq� ���c�	�� are plotted in Figures � and � for ci � cj � ���� km
and for several values of Li and Lj � The general formulas simplify considerably when
c �� ci � cj and L �� Li � Lj � and in this case

Pii
��z� �

��Lz�z  �L�

�
exp

�
� z

L

�
 
��L��c L��

z
exp

�
��c
L

��
	�

�
	� z

c L

�
exp

�
z

L

��

 �L�

�
exp

�
� z

L

�
� exp

�
z � �c
L

��
� � � z � c�

�
��L

z
exp

�
� z

L

� �
z�z  L���c� z�

�
 

�z � c�� � c�

�
� L�c L��z � c L�

 L�c L�� exp

�
z � �c
L

��
� c � z � �c�

with the formula for Pii
���� obtained using ���c����

Pii
���� � �L�

�
	� exp

�
��c
L

��
� ��cL

�
c L

	
exp

�
��c
L

�
� �����

The functions Cii
��z� represent continuous� homogeneous and isotropic correlation functions

on R� according to Theorem ��a���

��



The third�order autoregressive �TOAR� function

C��z� �

�
	  

jzj
L
 

z�

�L�

�
exp

�
�jzj
L

	
� �����

is obtained by taking the limit of Cii
��z� as c tends to in
nity� While C��z� in Eq� ����� is

four times continuously di
erentiable� the compactly supported TOAR�like function Cii
��z�

obtained from Pii
��z� is not even once di
erentiable at z � �� However� both one�sided

derivatives exist at the origin� with the derivative from the right given by

dCii
��� �

dz
� �	

c

� c
L

	� �
exp

��c
L

	
� 	� �c

L
� 	
�

��c
L

	����
� �����

A smoother TOAR�like function can be obtained by starting with the continuous functions

Bi
��r� �

�
exp

�
�jrj
Li

�
� exp

�
� ci
Li

��
Ici�r��

instead of with ������ The representing functions obtained in this case will be denoted by
Sij

��z�� and are de
ned analogously to the Cij
��z� of Eq� ������ Theorem ��a�� guarantees

that the Sii
��z� are at least twice continuously di
erentiable on R� and represent homoge�

neous and isotropic correlation functions on R�� Like Cii
��z�� Sii

��z� tends to the TOAR
function ����� as ci tends to in
nity� and is close to Cii

��z� when Li �� ci� Plots of Sii
��z��

the TOAR function� and Cii
��z� are given in Figures � and ��

��� Compactly supported 	th�order piecewise rational functions

A two�parameter �th�order piecewise rational function is obtained by self�convolving the
continuous� piecewise linear function

B��r� a� c� �


�
�
��a� 	�jrj
c 	 � � jrj � c
�
�a�	� jrj
c� c
� � jrj � c

� c � jrj
�

over R�� Theorem ��a�� guarantees that the self�convolution function C��z� a� c� is at least
twice continuously di
erentiable on R� and represents a homogeneous and isotropic corre�
lation function on R��

The function C��z� a� c� has a large number of terms� but simpli
es considerably in several
cases� If a � � or a � 	
�� B� is a triangular function� It is well known that self�
convolution over R of a triangular function yields a cubic B�spline �Strang� 	���� p� �����
Self�convolution of the triangular function

B��r� 	
�� c� �

�
	 � jrj

c

�
Ic�r�

over R� yields the �th�order piecewise rational function

C��z� 	
�� c� �


�
�
f��z
c� � � jzj � c

f��z
c� c � jzj � �c
� �c � jzj

�

��



where the even functions f� and f� are given for z � � by

f��z� � �z
	

�
 
z


�
 
�z�

�
� �z

�

�
 	� � � z � 	�

and

f��z� �
z	

	�
� z


�
 
�z�

�
 
�z�

�
� �z  �� �

�z
� 	 � z � �� ���	��

The function C��z��� c� obtained by taking the limit of C��z� a� c� as a tends to �� is
given by

C��z��� c� �


������
������

f��z
c� � � jzj � c
�
f��z
c� c
� � jzj � c
f��z
c� c � jzj � �c
�
f
�z
c� �c
� � jzj � �c
� �c � jzj

�

where the even functions f�� � � � � f
 are given for z � � by

f��z� � ���z
	

��
 
�z


		
 
��z�

		
� ��z

�

��
 	� � � z � 	
��

f��z� �
��z	

��
� 	�z




		
 
	��z�

��
� ��z
		

 
�	

��
� �

��z
� 	
� � z � 	�

f��z� � ��z
	

		
 
	�z


		
� 	�z

�

		
� 	��z

�

��
 �z � �	

��
 
		�

	��z
� 	 � z � �
��

and

f
�z� �
�z	

��
� �z




		
 
	�z�

		
 
��z�

��
� ��z
		

 
��

		
� ��

��z
� �
� � z � �� ���		�

The function C��z��� c� is three times continuously di
erentiable on R�

The function C��z� a� c� and the Gaussian function

G��z� L� � exp

�
� z�

�L�

�
���	��

represent homogeneous and isotropic correlation functions onR�� The functions C��z� 	
�� c�
and G��z� L� are similar for selected parameter values� as is illustrated in Figure � by match�
ing the length scales of these two functions �as de
ned below in Eq� ���	��� for c � 	��� km�
Here both G��z� L� and C��z� 	
�� c� where L � c

p
�� have length scale L � ��� km� Fig�

ures � and � are graphs of C��z� a� c� for c � 	��� km and various values of a�

��� Compactly supported product correlation functions

It is widely accepted that sample single�level short�term geopotential height forecast er�
ror correlations essentially vanish beyond distances of a few thousand km in the tropo�
sphere �Hollingsworth and L�onnberg� 	���� L�onnberg and Hollingsworth� 	���� Bartello
and Mitchell� 	���� Courtier et al�� 	����� For both computational and scienti
c reasons�
it is desirable in the Physical�space Statistical Analysis System �PSAS� under development

��



at the Data Assimilation O�ce �Cohn et al�� 	���� to re�ect this property by develop�
ing a space�limited horizontal correlation model that retains the essential features of the
geopotential height forecast error correlation model used in the predecessor GEOS�	 op�
timal interpolation system �Pfaendtner et al�� 	����� A general method for constructing
space�limited approximants of a given single�level univariate correlation model is described
and illustrated in this example�

The function used in the GEOS�	 optimal interpolation system for single�level geopotential
height forecast error correlations is modeled after the so�called powerlaw function

B��z� L� ��
	

	  ���z
L��
� ���	��

The one�dimensional Fourier transform of B��

!B��w�L� � �L
p
� exp

�
�L

p
� jwj

	
� ���	��

is everywhere nonnegative� By Theorem ��	�� B� represents a correlation function on R�
Let B� denote the radially symmetric function given by

B��x� �� B��kxk�� x � R��

Since z�B��z� L� does not lie in L
��R�� B� does not lie in L

��R�� # see Eq� ������ # implying
that the L��R�� Fourier transform of B� �Theorem ���� is not de
ned� Thus� although
!B��w�L� decreases monotonically for w � �� Theorems ��	� and ��	� cannot be applied
here� Reparameterize z in B��z� L� by great circle distance� as in Eq� �������

z � z��� � � sin

�
�

�

�
�
q
��	� cos����� � � � � ��

and de
ne

B�x�y� �� B��z���� L� �
	

	  ���z���
L��
�

	

	  �	� cos����
L�
� x�y � S��

where � is the great circle distance between x and y on S�� In the Appendix� it is shown
that each Legendre coe�cient

am �
�m 	

�

Z �

�
B��z���� L�Pm�cos���� sin��� d�� m � ��

of

B��z���� L� �
�X

m��

amPm�cos ���

is nonnegative� so that by Theorem ��		� B�x�y� is an isotropic correlation function on S��
Note� however� that B is not space�limited�

Recall from the discussion following De
nition ��� that the product function

D�x�y� �� B�x�y�C�x�y�� x�y � S�� ���	��

is a covariance function on S� whenever both B and C are covariance functions on S�� If
C is space�limited� vanishing identically for pairs of points on S� beyond distance d � ��

C�x�y� � �� kx� yk � d�

��



then since B is everywhere positive� D vanishes exactly where C does� i�e�� for kx�yk � d�
If C is isotropic� then D is isotropic by De
nition ����

In the case of the powerlaw� the choice

C�x�y� �� C��kx� yk� 	
�� c�� x�y � R�

in Eq� ���	��� where C� is as in Eq� ���	��� yields a space�limited� isotropic correlation
function

D�x�y� �� D��z���� L� c� �� B��z���� L�C��z���� 	
�� c�� � � � � �� x�y � S��

where � is the great circle distance between x and y on S�� The function D� vanishing
for jz���j � �c� provides a reasonable approximation to the powerlaw� as is demonstrated
below�

Given any twice di
erentiable function f that is concave in an interval containing zero�
de
ne a length scale Lf in the usual way �Daley� 	��	� p� 		���

Lf ��
	p�f ����� � ���	��

Using lowercase letters to simplify notation� e�g��

Lb� ��
	q

�B�
�����

�

it can be veri
ed that Lb� � L in Eq� ���	��� and that the length scale of C��z� 	
�� c�

is given by Lc� � c
p
��� The product rule for di
erentiation together with the fact that

B���� � C���� � 	 and B�
���� � C�

���� � � imply that

	

Ld�
� �

	

Lb�
�  

	

Lc�
� �

	

L�
 
	�

�c�
� ���	��

If L� is the parameter obtained by solving for L in Eq� ���	���

L� �

s
Lc�

�Ld�
�

Lc�
� � Ld�

� �

s
�c�Ld�

�

�c� � 	�Ld�
� � Lc� � Ld� � ���	��

then D��z� L�� c� has length scale Ld� �

In Figures ��	�� c is held 
xed at c � ���� km� Figure � is a graph of D��z� L�� c� and
B��z� Ld�� for Ld� � ��� km and Ld� � 	��� km� Note that both functions D��z� L�� c�
and B��z� Ld�� have the length scale Ld� � The compactly supported function D��z� L�� c�
agrees well with B��z� Ld�� for � � z � Ld� � However� D��z� L�� c� falls o
 to zero more
rapidly than B��z� Ld��� especially for larger values of Ld� � as indeed it must�

The wind�height and wind�wind correlation models derived under the geostrophic assump�
tion from either D��z� L�� c� or B��z� Ld�� are similar whenever the 
rst two derivatives of
D��z� L�� c� and B��z� Ld�� are similar �cf� Daley� 	��	� Sec� ����� Figure 	� is a graph of

dD��z� L�� c�

dz
and

dB��z� Ld��

dz
� z � �� ���	��

��



for Ld� � ��� km and Ld� � 	��� km� while Figure 		 is a graph of

d�D��z� L�� c�

dz�
and

d�B��z� Ld��

dz�
� z � ��

for Ld� � ��� km and Ld� � 	��� km� The graphs illustrate the degree of similarity of the
wind�height and wind�wind correlation models derived from D��z� L�� c� and B��z� Ld���

The Legendre coe�cients of D��z� L�� c� and B��z� Ld�� are plotted in Figure 	� for Ld� �
��� km and Ld� � 	��� km� Compare with Figures �a and � of Rabier et al� �	����� For
each Ld� � there is less power at large spatial scales forD��z� L�� c� than for B��z� Ld��� The
Legendre spectra of both functions begin to exhibit an oscillation at smaller spatial scales�
even though the one�dimensional Fourier spectrum ���	�� of B� decreases monotonically
with positive wavenumber�


 Concluding Remarks

The recent development of truly global atmospheric data analysis systems �e�g�� Parrish
and Derber� 	���� Cohn et al�� 	���� Courtier et al�� 	���� Rabier et al�� 	���� requires the
concomitant development of correlation models that are legitimate correlation functions on
the sphere� This article provides a comprehensive summary of mathematical theory perti�
nent to correlation modeling on the sphere� and establishes several techniques for the actual
construction of legitimate correlation functions on the sphere� These functions typically
depend on a small number of tunable parameters� Special emphasis has been placed on
the construction of space�limited correlation functions� in which one parameter determines
a distance beyond which the correlation function vanishes identically� Correlation mod�
els of this type are especially important for data analysis systems that operate directly in
physical space �Cohn et al�� 	����� Several examples have been included to illustrate the
practical application of both the constructive techniques and the basic mathematical theory
developed in this article�

Although the theory and constructive techniques are general� the results given here are
slanted toward the single�level� univariate case� Extension of these results to the nonsepa�
rable� multi�level� multivariate case will be the subject of future articles�
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A Appendix

A�� Proof of Theorem ��a��

The fact that rB��r� and rC��r� are both compactly supported and piecewise continuous
�C� is in fact continuous by Theorem ���� implies that they both lie in L��R�� Thus� if
h��r� �� rC��r�� then �see Eq� ��������

i
d !B��w�

dw
� F �rB���w� � !h��w� and

i
d !C��w�

dw
� F �rC���w� � !h��w�� �A�	�

Theorem ��� together with ������ imply that

� ��

kwk
d !C��kwk�
dkwk � !C��w� � !B��w�

�
�

�
� ��

kwk
d !B��kwk�
dkwk

��
� �A���

Note that !B� and !C� are real since B� and C� are both even functions by hypothesis� so
that �A��� implies that

d !C��w�

dw
� � for w � �� �A���

Combining �A�	� and �A��� yields

!h��w� �
��i

w

h
!h��w�

i�
� �A���

Now� the fact that B� is compactly supported implies that each derivative of B� that exists
is also compactly supported� The function h�

�n��� is piecewise continuous by hypothesis�
and is given by

h�
�n����r� � �n 	�B�

�n��r�  rB�
�n����r�� �A���

Therefore� h�
�n��� is both compactly supported and piecewise continuous� so that in par�

ticular� h�
�n��� lies in L��R�� It is known �Folland� 	���� p� �	�� that the facts that h�

�n�

is continuous and piecewise smooth and that h�
�n��� lies in L��R� imply that the Fourier

transform of h�
�n��� is related to !h� by

�iw�n�� !h��w� � F �h�
�n�����w�� �A���

Further� because h�
�n��� is compactly supported and piecewise continuous� the argument

used in Folland �	���� p� �	�� and in Bochner and Chandrasekharan �	���� Theorem 	� p� ��
to establish the Riemann�Lebesgue lemma implies that

F �h�
�n�����w� � O

�
	

w

�
� �A���

where O�	
w� means that the expression on the left is bounded by K
w in absolute value
for su�ciently large w� K being some 
xed constant independent of w� Combining �A�	��
�A���� �A���� and �A��� yields the relation

i
d !C��w�

dw
� !h��w� � O

�
	

w�n�	

�
� �A���

�	



Since B� is compactly supported on ��c� c�� C� and h��r� � rC��r� are also compactly
supported� with support ���c� �c�� Write the Fourier series of h� on ���c� �c� as

h��r� �
�X
��

ck exp
�k�ri
�c

	
� jrj � �c� �A���

The compact support of h� implies the following relation between the Fourier coe�cients
ck of the �odd� �c�periodic extension of h�� and the Fourier transform !h� of h��

ck �
	

�c

Z �c

��c
h��r� exp

�
�k�ri
�c

	
dr

�
	

�c

Z �

��
h��r� exp

�
�k�ri
�c

	
dr �

	

�c
!h�
�k�
�c

	
� �A�	��

Formulas �A��� and �A�	�� together imply that

ck �
	

�c
!h�
�k�
�c

	
� O

�
	

k�n�	

�
� �A�		�

It is well�known �Folland� 	���� p� �	� that formula �A�		� implies that the �c�periodic
extension of h� is at least �n � times continuously di
erentiable on R� hence h� is at least
�n � times continuously di
erentiable on ���c� �c�� All derivatives of h� outside ���c� �c�
vanish because h� is compactly supported� so that h� is at least �n  � times continuously
di
erentiable except possibly when r � ��c� Since C� is the quotient

C��r� �
h��r�

r
� r 
� �� �A�	��

it follows that C� is at least �n  � times continuously di
erentiable� except possibly at
r � � and at r � ��c�

The Riemann�Lebesgue lemma for C� together with �A��� imply the relation

!C��w� � �
Z �

w

d !C��t�

dt
dt� �A�	��

Formulas �A��� and �A�	�� imply that

!C��w� � O

�
	

w�n�


�
�

so that the Fourier coe�cients of C� have the property that

	

�c
!C�

�k�
�c

	
� O

�
	

k�n�


�
� �A�	��

Formula �A�	�� implies that C� is at least �n  � times continuously di
erentiable on
���c� �c��

Theorem ��� implies in particular that C� is continuous and lies in L��R��� It follows from
Eq� �A��� and Theorem ��	� that C�x�y�
C���� is a continuous� homogeneous and isotropic
correlation function on R�� Since C� is at least �n � times continuously di
erentiable on
���c� �c�� C�

��n����r� is continuous at r � � in particular� and Theorem ��	� implies that

C�
��n��� is continuously di
erentiable on all of R� �

��



A�� Proof of Theorem ��a�	

The Fourier transform !C� lies in L
��R� by Theorem ��	� and is also continuous� Thus the

function 	 de
ned on R by

	�w� ��
q
!C��w� �A�	��

lies in L��R� and is continuous� The Fourier transform on L��R� �cf� Stein and Weiss�
	��	� Theorem ���� p� 	�� Rudin� 	���� Theorem ��	�c� p� 	��� associates with 	� a function
D� in L

��R� such that� for almost all w in R�

	�w� � !D��w�� �A�	��

Combining �A�	�� and �A�	�� yields the relation

!C��w� � !D��w�
�� �A�	��

valid for almost all w in R� Since !C� is continuous and lies in L
��R�� !C� also lies in L

��R��
The convolution theorem for L��R� functions �Weidmann� 	���� p� ���� therefore implies
that �A�	�� can be inverted to yield C� � D� �D��

Suppose now that C� is twice continuously di
erentiable and that C�
��

lies in L��R�� It

follows that C�
�

lies in L��R� �Bochner and Chandrasekharan� 	���� Theorem 	�� p� ����
since C� lies in L

��R�� Thus

F ��C�
��

��w� � w� !C��w� �A�	��

follows �e�g�� Folland� 	���� p� �	��� Therefore� w� !C��w� lies in L��R� �e�g�� Stein and

Weiss� 	��	� Corollary 	���� p� 	��� so that by �A�	��� w !D��w� lies in L��R�� Let h�w�
be the function on R which is zero on ��	� 	� and equal to 	
w otherwise� The product of
h�w� and w !D��w� gives !D��w� for w outside ��	� 	�� Since h�w� and w !D��w� both lie in

L��R�� !D��w� is integrable outside ��	� 	�� Since !D��w� is square�integrable over ��	� 	��
!D� is integrable over ��	� 	� as well� Thus !D� also lies in L

��R�� Since !D� lies in L��R��
the function

F��r� ��
	

��

�Z
��

!D��w� exp�iwr�dw �A�	��

can be de
ned� Applying the argument used in Rudin �	���� Theorem ���� p� 	��� shows
that F� is continuous �and also vanishes at in
nity�� It is also true that D� and F� agree
almost everywhere �Rudin� 	���� Theorem ��	�� p� 	���� so that F� lies in L��R� and ���a���
holds�

Suppose that C� represents the radially symmetric function C� lying in L��R�� and the
homogeneous and isotropic correlation function C� Using Eqs� �A�	��� �A�	��� and �A�	��
yields�

F��r� ��
	

��

�Z
��

!D��w� exp�iwr� dw �
	

��

�Z
��

	�w� exp�iwr� dw

�
	

��

�Z
��

	�w� exp��iwr� dw� �A����

��



where the last inequality in Eq� �A���� holds since 	�w� is an even function� The fact that
	�w� is even also implies that F��r� is an even function� Equation �A���� shows that F��r�
is the Fourier transform of the continuous function 	�w�
��� According to Folland �	����
p� ���� Exercise ��� F� lies in L��R� if 	�w� also lies in L��R�� 	�w� is piecewise smooth�
and d	�w�
dw lies in L��R�� It was shown above that 	�w� lies in L��R�� Below it is
shown that the other two conditions also hold� so that in fact F� does lie in L

��R��

Changing to spherical coordinates yields

!C���� �

Z
C��r� dr � ��

Z �

�
C��r� r

� dr�

Thus rC��r� and r
�C��r� both lie in L

��R� # see the proof of Theorem ��	�� Since r�C��r�
lies in L��R�� applying Folland �	���� p� ���� Formula �� twice yields

� d� !C��w�

dw� �

�Z
��

r�C��r�exp��iwr� dr�

i�e�� !C� is twice di
erentiable� Since C is a homogeneous and isotropic correlation func�
tion� Theorem ��	� implies that !C� decreases monotonically for w � �� Since !C� is even�
continuous� everywhere nonnegative� and decreases monotonically for w � �� !C� is either
everywhere positive� or there is a constant w� � � so that !C� is positive on ��w�� w�� and
vanishes identically outside ��w�� w��� In either case� 	�w� is piecewise smooth� In the

case where !C� vanishes identically outside ��w�� w��� d	�w�
dw clearly lies in L��R�� If
!C� is everywhere positive� then 	�w� is twice di
erentiable everywhere� In addition�

d	�w�

dw
�

	

�
q
!C��w�

d !C��w�

dw
�A��	�

is nonpositive for each w � �� implying that 	�w� decreases monotonically for each w � ��
Applying the Fundamental Theorem of Calculus yields

bZ
�

d	�w�

dw
dw � 	�b� � 	���� b � �� �A����

Since 	�w� vanishes at in
nity by the Riemann�Lebesgue Lemma� letting b tend to in
nity
in Eq� �A���� yields

�Z
�

���d	�w�
dw

���dw � �
�Z
�

d	�w�

dw
dw � 	���� �A����

where the 
rst inequality in Eq� �A���� holds due to the monotonicity property established
in Eq� �A��	�� Using Eq� �A���� and the fact that jd	�w�
dwj is an even function shows
that d	�w�
dw lies in L��R�� Since this function is also continuous� it lies in L��R�� Thus
F� lies in L��R�� as asserted above�

Since F� lies in L
��R�� the Fourier transform of F� �given by Eq� ���	����

!F��w� �

�Z
��

F��r� exp��iwr� dr� �A����

��



exists� is a continuous function� and furthermore

!F��w� � 	�w� �A����

holds for each w in R� In particular� !F��w� decreases monotonically for each w � �� Let
F� be the radially symmetric function on R

�� and let F be the homogeneous and isotropic
function de
ned by

F �x�y� �� F��x � y� �� F��kx� yk�� x�y � R��

Since !F��w� �see Eq� �A����� was shown above to be twice di
erentiable for w � ��w�� w���
evaluating the second derivative at zero yields

� d� !F����

dw� �

�Z
��

r�F��r� dr � �

�Z
�

r�F��r� dr �
	

��

Z
F��r� dr �

the 
rst inequality follows from Folland �	���� p� ���� Formula ��� the second since r�F��r�
is an even function of r� and the third by changing to spherical coordinates� Thus F� lies in
L��R��� Recall from the argument following Eq� �A�	�� that F� is a continuous function�
implying that F� is also continuous� It follows from Theorem ��	� that F �x�y�
F���� is a
correlation function� �

A�� Detailed reduction of the convolution integral in Theorem ��c��

Theorem� Same hypotheses as Theorem ��c�	� Assume now that each rBi
��r� is contin�

uous on ��ci� ci�� De�ne Gj�s� for s � � to be the antiderivative

Gj�s� ��

Z s

�
t Bj

��t� dt

of sBj
��s�� For �xed z� let Hij�r� z� and Rij�r� z� be antiderivatives of

r Bi
��r�Gj�r z�� r � �� r  z � ��

and
r Bi

��r�Gj�z � r�� r � �� z � r � ��
respectively� so that

Hij�b� z��Hij�a� z� �
Z b

a
rBi

��r�Gj�r  z� dr� a z � ��

and

Rij�b� z��Rij�a� z� �
Z b

a
rBi

��r�Gj�z � r� dr� z � b � ��
hold for b � a � �� If z � � and ci � cj� then

Pij
��z� �


��������
��������

f��z� � � z � min�ci� cj � ci�
f��z� ci � z � cj � ci
f��z� cj � ci � z � ci
f
�z� max�ci� cj � ci� � z � cj
f	�z� cj � z � ci  cj
� ci  cj � z

�

��



for i� j � 	� �� � � � � m� where f�� � � � � f	 are given by


f��z� �
��

z

h
Hij�ci� z��Hij��� z��Rij�z� z�

 Rij��� z��Hij�ci��z�  Hij�z��z�
i
�

f��z� �
��

z

h
Hij�ci� z� �Hij��� z� �Rij�ci� z�  Rij��� z�

i
�

f��z� �
��

z

h
Hij�cj � z� z��Hij��� z�  Gj�cj��Gi�ci��Gi�cj � z��

�Rij�z� z�  Rij��� z��Hij�ci��z�  Hij�z��z�
i
�

f
�z� �
��

z

h
Hij�cj � z� z� �Hij��� z�

 Gj�cj��Gi�ci��Gi�cj � z���Rij�ci� z�  Rij��� z�
i
�

f	�z� �
��

z

h
Rij�z � cj � z�� Rij�ci� z�  Gj�cj��Gi�ci�� Gi�z � cj��

i
� �A����

Proof� The reduction of formula ���c��� to integrals over the support of the integrand
rBi

��r�sBj
��s� yields three integrals which will be denoted by I�� I� and I�� respectively�

I��z� ��
��

z

ciZ
�

rBi
��r�

r�zZ
jr�zj

sBj
��s� ds dr� � � z � cj � ci�

I��z� ��
��

z

cj�zZ
�

rBi
��r�

r�zZ
jr�zj

sBj
��s� ds dr

 
��

z

ciZ
cj�z

rBi
��r�

cjZ
jr�zj

sBj
��s� ds dr� cj � ci � z � cj �

I��z� ��
��

z

ciZ
z�cj

rBi
��r�

cjZ
z�r

sBj
��s� ds dr� cj � z � ci  cj � �A����

The integral I��z� can be written as

I��z� �
��

z

ciZ
�

r Bi
��r�

h
Gj�r z��Gj�jr� zj�

i
dr� �A����

��



If ci � z � cj � ci� then jr � zj � z � r everywhere over the interval ��� ci� of integration
in �A����� and I��z� reduces to f��z�� If � � z � min�ci� cj � ci�� then �A���� reduces to
f��z��

I��z� �
��

z

h
Hij�ci� z��Hij��� z��

zZ
�

r Bi
��r�Gj�z � r� dr

�
ciZ
z

r Bi
��r�Gj�r� z� dr

i

�
��

z

h
Hij�ci� z��Hij��� z�� Rij�z� z�  Rij��� z��Hij�ci��z�  Hij�z��z�

i
�

The formulas for f� and f
 are obtained from I��

I��z� �
��

z

cj�zZ
�

r Bi
��r�

h
Gj�r z��Gj�jr�zj�

i
dr 

��

z

ciZ
cj�z

rBi
��r�

h
Gj�cj��Gj�jr�zj�

i
dr

�
��

z

cj�zZ
�

r Bi
��r�Gj�r  z� dr  

��Gj�cj�

z

h
Gi�ci��Gi�cj � z�

i

� ��

z

ciZ
�

r Bi
��r�Gj�jr� zj� dr� �A����

If max�ci� cj � ci� � z � cj � then jr � zj � z � r everywhere over the interval ��� ci� of
integration in the last term of �A����� and I��z� reduces to f
�z�� If cj � ci � z � ci� then
�A���� reduces to f��z� in a manner similar to the way that �A���� was reduced to f��z��

The reduction of I� to f	 is straightforward�

I��z� �
��

z

ciZ
z�cj

rBi
��r�

h
Gj�cj��Gj�z � r�

i
dr

�
��

z

h
Gj�cj��Gi�ci�� Gi�z � cj��� Rij�ci� z�  Rij�z � cj � z�

i
�

�

A�� Proof that the powerlaw represents a correlation function on the
sphere

To show that the powerlaw

B��z���� L� �
	

	  �	� cos����
L�
� � � � � ��

��



represents a correlation function B�x�y� on S�� it su�ces to show �Theorem ��		� that each
Legendre coe�cient

am �
�m 	

�

Z �

�
B��z���� L�Pm�cos���� sin��� d�� m � �� �A��	�

of

B��z���� L� �
�X

m��

amPm�cos ���

is nonnegative� Put b �� 	
L� for now� and change the integration variable in �A��	� to
x � cos����

am �
�m 	

�

Z �

��

Pm�x�

	  b� bx
dx �

�m 	

��	  b�

Z �

��

Pm�x�

	 � bx
�	  b�
dx� �A����

Since jxj � 	 over the interval of integration in �A����� the geometric series formula

	

	 � bx
�	  b�
�

�X
k��

�
bx

	  b

�k

�

����� bx

	  b

����� � b

b 	
� 	� �A����

can be applied� By substituting �A���� into �A����� it follows that

am �
�m 	

��	  b�

�X
k��

�
b

	  b

�k Z �

��
Pm�x� x

k dx

�
��m 	�L�

��	  L��

�X
k��

	

�	  L��k

Z �

��
Pm�x� x

k dx� �A����

the order of summation and integration is justi
ed� since the integrand in �A���� is contin�
uous on the compact set ��	� 	 �� and hence also bounded on ��	� 	 ��

To complete the proof� it su�ces to show that

c�m� k� ��
Z �

��
Pm�x� x

k dx� m� k � ��

is nonnegative for each m� k � �� Multiplying both sides of the recurrence relation �e�g��
Folland� 	���� p� 	��� Exercise ��

��m 	�xPm�x� � �m 	�Pm���x�  mPm���x�� m � 	�

by xk�� and then integrating over ��	� 	 � yields
��m 	� c�m� k� � �m 	� c�m 	� k � 	�  mc�m� 	� k� 	�� m� k � 	� �A����

Using the recurrence Eq� �A����� c�m� k� can be determined for each m� k � 	 from the
initial conditions

c�m� �� and c��� k�� m� k � �� �A����

Since c�m� k� is nonnegative whenever c�m 	� k� 	� and c�m� 	� k� 	� are both nonneg�
ative� the proof will be complete if it is shown that the initial conditions in �A���� are all
nonnegative� If k � m� then since the 
rst m Legendre polynomials

P��x�� P��x�� � � � � Pm���x�

��



are a basis for the polynomials of degree less than m� there are coe�cients �j such that

xk � ��P��x�  ��P��x�  � � � �m��Pm���x�� �	 � x � 	� �A����

Using Eq� �A���� together with the orthogonality relation

Z �

��
Pm�x�Pj�x� dx� j 
� m�

it follows that
c�m� k� � �� m � k� �A����

so that in particular�
c�m� �� � �� m � 	� �A����

Observe that Pm�x�x
k is an odd function for m  k odd and an even function if m  k is

even� Thus
c�m� k� � �� m k odd� m� k � �� �A����

and

c�m� k� � �
Z �

�
Pm�x� x

k dx� m k even� m� k � ��

It follows from

c��� �j� � �

Z �

�
P��x�x

�j dx � �

Z �

�
x�j dx �

�

�j  	
� j � ��

and Eqs� �A���� and �A����� that the initial conditions in �A���� are all nonnegative� thus
completing the proof� �

Remark� Using Eqs� �A����� �A����� and �A����� the nonzero c�m� k� can be generated
using the initial conditions

c�j� j� and c��� �j�� j � �

where

c�j  	� j  	� �
j  	

�j  �
c�j� j�� j � ��
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SOAR,  L = 600 km

f (r,600,3000)   

f (r,600,1500)   
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Figure 	� The compactly supported function f�r� L� c� in Eq� ����� for c � 	��� km and c �
���� km� with L � ��� km� along with the SOAR function in Eq� ������� with L � ��� km�
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Cii (600,3000,600,3000)

Cij (500,3000,600,3000)

Cjj (500,3000,500,3000)
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Figure �� The functions Cii
�� Cij

�� and Cjj
� of Example ��b� with the legend indicating the

length scales and cuto
s �in km� in the format Cij�Li� ci� Lj� cj��
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Cii (800,3000,800,3000)

Cij (300,3000,800,3000)

Cjj (300,3000,300,3000)
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Figure �� As in Figure �� but for di
erent length scales�
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TOAR function, L = 300 

Cii (300,1500,300,1500)

Sii (300,1500,300,1500)
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Figure �� The TOAR function ������ the compactly supported TOAR�like function Cii
��

and the compactly supported and twice continuously di
erentiable TOAR�like function Sii
�

of Example ��b� with the legend indicating the length scales and cuto
s� The format for
reading length scales and cuto
s is the same as for Fig� ��
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TOAR function, L = 500 

Cii (500,1500,500,1500)

Sii (500,1500,500,1500)
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Figure �� As in Figure �� but for di
erent length scales�
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C0 (z,1/2,c),   Eq. (4.10)  
G0 (z,L),         Eq. (4.12)
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c = 1500 km,   L = c*sqrt(.3)

Figure �� The piecewise rational function C��z� 	
�� c� of Example ��c and the Gaussian
function G��z� L� in Eq� ���	��� for c � 	��� km and L � c

p
��km�
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a = .5  

a = −1  

a = −.23

a = −.1 
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Figure �� The function C��z� a� c� of Example ��c for c � 	��� km and various values of a�
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a = .5  
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Figure �� As in Fig� ��
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D0 (z,644.5,c) 

B0 (z,600)     

D0 (z,1756.6,c)

B0 (z,1200)    
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c = 3000 km

Figure �� The functions D��z� L�� c� and B��z� Ld�� of Example ��d� for Ld� � ��� km and
Ld� � 	��� km� with L� de
ned by Eq� ���	���
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D0’ (z,644.5,c) 

B0’ (z,600)     

D0’ (z,1756.6,c)

B0’ (z,1200)    
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Figure 	�� The 
rst derivatives of the functions in Fig� �� The parameters Ld� � L�� and c
are as in Fig� ��
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D0" (z,644.5,c) 

B0" (z,600)     

D0" (z,1756.6,c)

B0" (z,1200)    
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Figure 		� The second derivatives of the functions in Fig� �� The parameters Ld� � L�� and
c are as in Fig� ��
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spec_D0 (z,644.5,c) 
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Figure 	�� The Legendre coe�cients of the functions in Fig� �� The parameters Ld� � L��
and c are as in Fig� �� The pre
x �spec� in the legend abbreviates �spectrum��
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